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We study photon diffusion in a two-dimensional random packing of monodisperse disks as a simple model
of granular media and wet foams. We assume that the intensity reflectance of disks is a constant r. We present
an analytic expression for the transport mean free path l* in terms of the velocity of light in the disks and host
medium, radius R and packing fraction of the disks, and the intensity reflectance. For glass beads immersed in
air or water, we estimate transport mean free paths about half the experimental ones. For air bubbles immersed
in water, l* /R is a linear function of 1 /�, where � is the liquid volume fraction of the model wet foam. This
throws light on the empirical law of Vera et al. �Appl. Opt. 40, 4210 �2001�� and promotes more realistic
models.
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I. INTRODUCTION

There is a good reason to study wave propagation in tur-
bid or random media: Multiply scattered waves can probe
temporal changes in physical systems �1–3�. Thus, light
transport through fog �4�, milky liquids, nematic liquid crys-
tals �5�, granular media �6–9�, foams �10–16�, and human
tissue �17�; propagation of elastic waves in the Earth’s crust
�18,19�; acoustic waves in the fluidized or sedimenting sus-
pensions �20�; etc., have attracted much attention.

In a turbid medium, light undergoes many scattering
events before leaving the sample and the transport of light
energy is diffusive �3�. Therefore, the photon can be consid-
ered as a random walker. The transport mean free path l*,
over which the photon direction becomes randomized, de-
pends on the structural details of the opaque medium. Ex-
perimental techniques like diffuse-transmission spectroscopy
�DTS� �21� and diffusing-wave spectroscopy �DWS� �22�
can be used to measure l*. In DTS, the average fraction T of
incident light transmitted through a slab of thickness L is
measured. The transport mean free path is then deduced from
T� l* /L. Utilizing the temporal intensity fluctuations in the
speckle field of the multiply scattered light, DWS determines
l* and the mean-squared displacement of the scattering sites
due to time evolution, thermal motion, or flow.

A plethora of light-scattering experiments show that light
transport reaches its diffusive limit in granular media �6–9�
and foams �10–16�, which means that photons perform a
random walk. However, the mechanisms underlying this ran-
dom walk are not elucidated. A wet foam is composed of
spherical gas bubbles dispersed in liquid. A relatively dry
foam consists of polyhedral cells separated by thin liquid
films. Three of them meet in the so-called Plateau borders
which then define tetrahedral vertices �23�. In their studies of
foams with the liquid volume fraction � in the range 0.008
���0.3, Vera, Saint-Jalmes, and Durian �11� observed the
empirical law

l* � 2R�0.14

�
+ 1.5� , �1�

where R is the average bubble radius. Recent studies of scat-
tering from Plateau borders �11,24�, vertices �25�, and films
�26–31� or transport effects such as total internal reflection of
photons inside the Plateau borders �12,32� have not yet clari-
fied the empirical law of Vera et al. For granular media,
systematic measurements of the transport mean free path l*
as a function of the refractive indices of grains and the host
medium �air, water, etc.�, grain size, and packing fraction
have not been performed. Menon and Durian �6� determined
l*�15R for glass spheres of radius R=47.5 �m dispersed in
air. For glass beads dispersed in water, Leutz and Rička �8�
found l*�14R−16R for 80 �m�R�200 �m. Their
samples had a packing fraction ��0.64. Crassous �9� per-
formed numerical simulations to find l* as a function of re-
fractive indices of the grain and host medium, but only for
packing fraction ��0.64.

It is instructive to consider simple or even toy models of
granular media and wet foams, which allow an analytic ac-
cess to the transport mean free path l*. Apparently, such
models pave the way for a deeper understanding of fascinat-
ing DWS experiments. In this paper, we consider two-
dimensional packing of monosize disks. The disks are much
larger than the wavelength of light; thus, one can employ ray
optics to follow a light beam or photon as it is reflected by
the disks with a probability r called the intensity reflectance.
We assume that the intensity reflectance is constant and the
velocity of light inside and outside the disks is c /nin and
c /nout, respectively. We show that the photon’s random walk
based on the above rules is a persistent random walk
�26,33,34�. Writing a master equation to describe the photon
transport, we find in Sec. III A the transport mean free path
as

l* =
�R

4

� 3

2r
− 1�� r

1 − r
+ �1 − �

�
�2	

� �

nin
+

1 − �

nout
��nin

r

1 − r
+ nout

1 − �

�
� , �2�
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where � and R denote the packing fraction and radius of
disks, respectively. We further study our model by numerical
simulation of the photon’s random walk. We observe the
overall agreement between our numerical and analytical es-
timates of the transport mean free path.

For glass beads immersed in air or water, we find trans-
port mean free paths about half the experimental ones �6,8�.
For air bubbles immersed in the water, we use Eq. �2� to
derive l* as a function of the liquid volume fraction �=1
−�. r�0.20 is estimated as a weighted average of Fresnel’s
intensity reflectance. We find that in the range 0.08��
�0.15, our analytical result agrees well with the relation l*
�R�0.11 /�+2.37�. In other words, we find that l* /R is a
linear function of 1 /�. Using the hybrid lattice gas model for
two-dimensional foams and Fresnel’s intensity reflectance,
Sun and Hutzler performed a numerical simulation of photon
transport and found l*�R�0.26 /�+4.90� �24�. Quite remark-
ably, our analytic estimate of the transport mean free path
throws light on the empirical law of Vera et al. and the nu-
merical simulation of Sun and Hutzler.

Our article is organized as follows. In Sec. II we introduce
the two-dimensional packing of disks as a simple model for
a granular medium or a wet foam. Photon transport in a
random packing of disks using constant intensity reflectance
is discussed in Sec. III. Discussions, conclusions, and an out-
look are presented in Sec. IV.

II. MODEL

As a simple model for a two-dimensional disordered
granular medium, wet foam, and bubbly liquid, we choose
the random packing of circular disks. All nonoverlapping
disks have the same radius R and cover a fraction � of the
plane. To address the photon transport in such a medium, we
have made the following assumptions: �i� Disks or grains,
are much larger than the wavelength of light; thus, one can
employ ray optics to follow a light beam or photon as it is
reflected by the disks with a probability r called the intensity
reflectance. �ii� r is a constant, with no dependence on the
incidence angle. �iii� Although disks of refractive index nin
are immersed in a medium of refractive index nout, the inci-
dent and transmitted rays have the same direction. In other
words, we assume that the angle of refraction equals the
angle of incidence. �iv� The velocity of light inside and out-
side the disks is c /nin and c /nout, respectively.

Our first assumption is inspired by the experiments �6–9�.
Our second and third assumptions do not agree with
Fresnel’s formulas and Snell’s law, respectively. Conse-
quently, our model does not consider the total internal reflec-
tion of rays. However, we deliberately adopt a step-by-step
approach to photon transport in granular media and will con-
sider more realistic models later.

As already mentioned, we model single-photon paths in a
packing of disks as a random walk with rules motivated by
ray optics; i.e., an incoming light beam is reflected from a
disk surface with a probability r or it traverses the disk sur-
face with a probability t=1−r. This naturally leads to a per-
sistent random walk of the photons �26�, where the walker
remembers its direction from the previous step �33,34�. Per-

sistent random walks are employed in biological problems
�35�, turbulent diffusion �36�, polymers �37�, Landauer dif-
fusion coefficient for a one-dimensional solid �38�, and gen-
eral transport mechanisms �39,40�. More recent applications
are reviewed in �41�. In the following section, we adopt the
approach of �28,39� to study persistent random walk of the
photons in a granular medium.

III. PHOTON TRANSPORT IN A TWO-DIMENSIONAL
PACKING OF DISKS

A. Analytical treatment

The photon random walk in a packing of disks consists of
steps inside and outside the disks. We denote the average

length of steps inside and outside the grains by L̄in and L̄out,
respectively. We characterize each step by an angle relative
to the x axis. As Fig. 1�a� demonstrates, on hitting a disk with
an incidence angle �, a photon moving in the host medium
along the direction 	+�+2� will be either reflected to the
direction 	 or enter the disk. The probability distribution of
the random variable � �0���� /2� is F���=cos �; see the
Appendix. Similarly, a photon moving in a disk along the
direction 	+�+2�� and hitting its surface with an angle ��
will be either reflected to the direction 	 or enter the host
medium; see Fig. 1�b�. Quite remarkably, the probability dis-
tributions of the incidence angles � and �� are the same; see
the Appendix. We can therefore conclude that the diffusions

FIG. 1. �a� Path of a photon moving in the host medium and
hitting a disk with an incidence angle �. �b� Path of a photon mov-
ing in a disk and hitting its surface with an incidence angle ��. The
step length inside the disk is 2R cos ��, where R is radius of the
disk. �c� A photon impinging on a disk with an impact parameter s.
Note s=R sin �. �d� The distance s� is related to the incidence angle
�� by s�=R sin ��.
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of the photons inside and outside the grains are not inher-
ently different. As will be shown in the following, we write a
master equation to describe the photon diffusion inside �out-

side� the grains, utilizing the step length L̄in �L̄out� and veloc-
ity c /nin �c /nout�, and extract the diffusion constant Din
�Dout�. According to the two-state Lennard-Jones model �34�,
the diffusion constant of photons in the granular medium is

Dm = f inDin + foutDout, �3�

where f in �fout=1− f in� is the fraction of time that the photons
spend inside �outside� the disks.

We introduce the probability Pn�x ,y 
	�dxdy that the pho-

ton after its nth step of length L̄ along the direction 	 arrives
in the area dxdy at position x= �x ,y�. Then the following
master equation expresses the evolution of Pn�x ,y 
	�:

Pn+1�x,y
	� =
1

2
r�

−�/2

�/2

Pn�x − L̄ cos 	,y − L̄ sin 	
	 + � + 2��


F���d� + tPn�x − L̄ cos 	,y − L̄ sin 	
	� . �4�

The first term on the right-hand side describes the reflection
of the photon with a probability r. The photon which has

arrived at position �x− L̄ cos 	 ,y− L̄ sin 	� along the direction
	+�+2� changes its direction by an angle �+2� according
to the probability function F��� �42�. The second term de-
scribes the transmission with a probability t=1−r. The pho-

ton performs a ballistic motion with step length L̄ along di-

rection 	 from position �x− L̄ cos 	 ,y− L̄ sin 	� to �x ,y�.
The diffusion constant follows from the evaluation of the

second moment of Pn�x ,y 
	� with respect to the spatial co-
ordinates x and y. The probability distribution as an exact
solution of the master equation �4� is hard to obtain. How-
ever, there is a more direct method for the evaluation of the
moments which employs the characteristic function
Pn��x ,�y 
m� associated with Pn�x ,y 
	� �34�:

�xk1yk2n �� � � xk1yk2Pn�x,y
	�dx dy d	

= ��− i�k1+k2
�k1+k2Pn��� 
m = 0�

��x
k1��y

k2
�

�� =0

, �5�

where k1 and k2 are either zero or positive integers,

Pn��� 
m� � �
−�

�

eim	� � ei�� ·xPn�x,y
	�dx dy d	 , �6�

and �� = ��x ,�y�. We are interested in the first and second
moments of Pn�x ,y 
	�; thus, we focus on the Taylor expan-
sion

Pn��,�
m� � Q0,n��
m� + i�L̄Q1,n��
m� −
�2L̄2

2
Q2,n��
m�

+ ¯ , �7�

where � and � are the polar representation of the vector ��
= ��x ,�y�. From Eqs. �5� and �7� it follows that

�xn = L̄Q1,n�0
0� ,

�yn = L̄Q1,n��

2

0� ,

�x2n = L̄2Q2,n�0
0� ,

�y2n = L̄2Q2,n��

2

0� . �8�

Fourier transforming Eq. �4�, we obtain

Pn+1��,�
m� = �
k=−



ike−ik�Jk��L̄�Pn��,�
k + m�


 �r�− 1�m+kF�2m + 2k� + t� , �9�

where F�m�= 1
2�−�/2

�/2 eim�F���d� and

Jk�z� =
1

2�ik�
−�

�

eiz cos 	e−ik	d	 �10�

is the kth-order Bessel function. Since we are only interested
in the Taylor coefficients Q1,n�� 
m� and Q2,n�� 
m�, we insert
Eq. �7� into Eq. �9�. Using the Taylor expansion of the rel-
evant Bessel functions Jk�z� �
k
�2� and Jk�0�=�0,k �43� and
collecting all terms with the same power in � results in the
following recursion relations for the Qi,n�� 
m�:

Q0,n+1��
m� = �t + r�− 1�mF�2m��Q0,n��
m� ,

Q1,n+1��
m� = �t + r�− 1�mF�2m��Q1,n��
m�

+
e−i�

2
�t + r�− 1�m+1F�2m + 2��Q0,n��
m + 1�

+
ei�

2
�t + r�− 1�m−1F�2m − 2��Q0,n��
m − 1� ,

Q2,n+1��
m� = �t + r�− 1�mF�2m��Q2,n��
m�

+ e−i��t + r�− 1�m+1F�2m + 2��Q1,n��
m + 1�

+ ei��t + r�− 1�m−1F�2m − 2��Q1,n��
m − 1�

+
1

2
�t + r�− 1�mF�2m��Q0,n��
m�

+
e−2i�

4
�t + r�− 1�m+2F�2m + 4��Q0,n��
m + 2�

+
e2i�

4
�t + r�− 1�m−2F�2m − 4��Q0,n��
m − 2� .

�11�

We solve this set of coupled linear difference equations using
the method of the z transform �34,44�. The z transform Q�z�
of a function Qn of a discrete variable n=0,1 ,2 , . . .. is de-
fined by Q�z�=�n=0

 Qnzn. One then derives the z transform of
Qn+1 simply as Q�z� /z−Qn=0 /z. Note the similarities of this
rule with the Laplace transform of the time derivative of a
continuous function �43�. The z transform of Eqs. �11� leads
to a set of algebraic equations which immediately gives
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Q0�z,�
m� =
Q0,n=0��
m�

1 − z�t + r�− 1�mF�2m��
,

Q1�z,�
m� =
Q1,n=0��
m�

1 − z�t + r�− 1�mF�2m��
+

z

2�1 − z�t + r�− 1�mF�2m���


 � e−i��t + r�− 1�m+1F�2m + 2��Q0,n=0��
m + 1�
1 − z�t + r�− 1�m+1F�2m + 2��

+
ei��t + r�− 1�m−1F�2m − 2��Q0,n=0��
m − 1�

1 − z�t + r�− 1�m−1F�2m − 2�� � ,

Q2�z,�
m� =
Q2,n=0��
m�

1 − z�t + r�− 1�mF�2m��
+

zQ0,n=0��
m�
2�1 − z�t + r�− 1�mF�2m���2 +

z

1 − z�t + r�− 1�mF�2m��


 �e−i��t + r�− 1�m+1F�2m + 2��Q1�z,�
m + 1� + ei��t + r�− 1�m−1F�2m − 2��Q1�z,�
m − 1�

+
e−2i��t + r�− 1�mF�2m + 4��Q0,n=0��
m + 2�

4�1 − z�t + r�− 1�m+2F�2m + 4���
+

e2i��t + r�− 1�mF�2m − 4��Q0,n=0��
m − 2�
4�1 − z�t + r�− 1�m−2F�2m − 4��� � , �12�

where F�m�= �1−m2�−1 cos�m� /2�, especially F�0�=1. The
above expressions contain the sum of several terms whose
inverse z transforms are readily accessible:

1 ↔
1

1 − z
,

n ↔
z

�1 − z�2 ,

an ↔
1

1 − az
,

nan ↔
az

�1 − az�2 . �13�

Here a is an arbitrary real number whose absolute magnitude
is less than 1.

For an arbitrary initial distribution P0�x ,y 
	�, the relevant
function Q1,n�� 
0� contains terms which are either constant
or behave as an with 
a 
 �1. They are associated with the
randomization of the initial distribution of the random walk-
ers, but are not essential for large n. According to Eq. �8�,

�xn = �yn = 0. �14�

The behavior of the mean-square displacements is associated
with Q2,n�� 
0�; see Eq. �8�. We checked that for large n or in
the long-time limit it is purely diffusive, i.e.,

�x2n = 2Dx� ,

�y2n = 2Dy� , �15�

where we introduced the time �=nL̄ /v which passes when
the random walker makes n steps at a speed v. We extract the
diffusion constants from Q2,n�0 
0� and Q2,n� �

2 
0�:

Dx = Dy =
1

4
L̄v� 3

2r
− 1� . �16�

As already mentioned, we write the master equation �4� to
describe photon diffusion in the grains and in the host me-
dium. Equation �16� immediately leads to

Din =
1

4
L̄in

c

nin
� 3

2r
− 1� ,

Dout =
1

4
L̄out

c

nout
� 3

2r
− 1� . �17�

The task is now expressing L̄in, L̄out, f in, and fout in terms of
the model parameters �R, �, and r�, and using the two-state
model of Lennard-Jones to derive Dm. First, we note that

L̄in= �2R cos ���, where �� is the incidence angle of pho-
tons moving in the disk and here �¯ denotes averaging with
respect to the probability distribution F�����=cos ��; see the

Appendix A and Fig. 1�b�. Second, �= L̄in / �L̄in+ L̄out�. Hence
we find

L̄in =
�R

2
,

L̄out =
�R

2

1 − �

�
. �18�

The evaluation of f in is more exacting. Each step length L̄in

inside a disk takes a time �̄in= L̄innin /c. The probability of m
internal steps before leaving the disk is trm. Hence the aver-
age time that a photon spends in the disk is �m=0m�̄intr

m

= �̄inr / t. The photon spends a time �̄out= L̄outnout /c before
reaching a disk. Hence
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f in =
�̄inr/t

�̄out + �̄inr/t
=

nin
r

1 − r

nin
r

1 − r
+ nout

1 − �

�

,

fout =
�̄out

�̄out + �̄inr/t
=

nout
1 − �

�

nin
r

1 − r
+ nout

1 − �

�

. �19�

Now we utilize Eq. �3� to derive the diffusion constant of
photons in the granular medium as

Dm =
�Rc

8

� 3

2r
− 1�� r

1 − r
+ �1 − �

�
�2�

nin
r

1 − r
+ nout

1 − �

�

. �20�

In two-dimensional space, the transport mean free path fol-
lows from

l* = 2Dm/cm, �21�

where cm is the transport velocity of light in the medium. To
a first approximation,

cm = �
c

nin
+ �1 − ��

c

nout
. �22�

Note that the velocity of light in the disks �the host medium�
covering a fraction ��1−�� of the plane is c /nin�c /nout�.
From Eqs. �20�–�22�, we find the transport mean free path l*
mentioned already in Eq. �2� in the Introduction.

B. Numerical simulations

We presented an analytic theory to calculate the diffusion
constant of photons. Now we carefully examine this analytic
result by performing numerical simulations.

In order to generate random configurations of monodis-
perse disks with a desired packing fraction, we compress a
dilute system of rigid disks into a smaller space. Simulation
methods based on a confining box generate a packing whose
properties in the vicinity of walls differ from those in the
bulk. Hence we utilize the compaction method of Ref. �45�,
which combines the contact dynamics algorithm �46,47� with
the concept of the Andersen dynamics �48�. This combined
simulation method involves a variable area of the simulation
box with periodic boundary conditions in all directions. Due
to the exclusion of sidewalls, the algorithm generates ho-
mogenous packings.

We let photons perform a random walk in our packing of
disks by applying the rules introduced in Sec. II. For improv-
ing the speed of our ray-tracing program, we adopt the cell
index method commonly used in the molecular dynamics
simulations �49�. The square simulation box is divided into a
regular lattice of J
J cells. We maintain a list of disks in
each of these cells. A photon moving in the cell j�1� j
�J2� probably hits the disks in the cell j or its neighbor

cells. Thus it is not necessary to check the collision between
the photon and all disks of the medium.

Our computer program shrinks an initial dilute sample of
104 nonoverlapping disks randomly distributed in a two-
dimensional simulation box. In the course of shrinking the
packing, the program saves snapshots of the grain positions
if the packing fraction �� �0.15,0.25, . . . ,0.75�; see Fig. 2.
For each medium, the program takes 104 photons at an initial
position and launches them in a direction specified by angle
	0 relative to the x axis. Then it generates the trajectory of
each photon following a standard Monte Carlo procedure
and evaluates the statistics of the photon cloud at times �
� �7000,7100, . . . ,9900� �in units of R /c�. As detailed in
Ref. �26�, we determine the diffusion constant Dm from the
temporal evolution of the average mean-square displacement
of the photons: �x2+y2=4Dm�.

For angles 	0� �20° ,40° , . . . ,320° �, the simulation is re-
peated for each intensity reflectance r� �0.1,0.2, . . . ,0.9�.
As a reasonable result, no dependence on the starting point
and the starting direction is observed. In Fig. 3 we plot the
diffusion constant Dm �in units of the disk radius R times the
velocity of light c� as a function of the intensity reflectance r
for glass disks �nin=1.5� immersed in air �nout=1.0�. For this
medium, Fig. 4 shows the diffusion constant Dm �in units of
the disk radius R times the velocity of light c� as a function
of the packing fraction � for the intensity reflectances r
=0.1 and 0.4. The error bars reflect the the standard devia-
tions when we average over all diffusion constants for dif-
ferent starting positions and angles. We also performed simu-
lations for the other examples �nin=1.34, nout=1.0�, �nin
=1.0, nout=1.34�, �nin=1.0, nout=1.5�, etc., but the results are
not shown here. We observed the overall agreement between
the numerical results and our theoretical value for Dm. Quite
remarkably, Eq. �20� involves no free parameters, but reason-
ably agrees with the numerical results in a wide range of �,
r, nin, and nout.

IV. DISCUSSION, CONCLUSIONS, AND OUTLOOK

Diffusing-wave spectroscopy provides invaluable infor-
mation about the static and dynamic properties of granular

FIG. 2. Part of a packing of 104 disks, covering a fraction �
=0.35 of the plane.
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media �6–9� and foams �10–16�. The transport mean free
path l* in terms of the microscopic structure, however, re-
mains to be fully elucidated. In this paper, we consider a
simple model for photon diffusion in a two-dimensional
packing of disks. Our analytical result for l* provides in-
sights into light transport and promotes more realistic mod-
els.

We have studied the photon’s persistent random walk in a
two-dimensional packing of monodisperse disks. We em-
ployed ray optics to follow a light beam or photon as it is
reflected by the disks. We used a constant-intensity reflec-
tance r. Moreover, we assumed that on hitting a disk, the
incident and transmitted rays have the same direction. To
achieve a better understanding of photon diffusion in granu-
lar media and wet foams, we are extending our studies by
considering Fresnel’s formulas for the intensity reflectance,
Snell’s law of the refraction, and the three-dimensional pack-
ing of polydisperse spheres. We are also improving our esti-
mate of l* by taking into account the distribution of photons’
step length and the transport velocity of photons �50�. We
discuss these points in the following.

Many two-dimensional systems offer a rich and unex-
pected behavior. For an experimental observation of photon
diffusion in a two-dimensional packing, a set of parallel fi-
bers can be used. Photons injected in a plane perpendicular
to the axis of fibres perform a planar diffusion. One can also
drill parallel cylinders in a host medium and fill all the cyl-
inders with a liquid: the l* dependence on the refractive in-
dex nin can be measured. Note that a ray maintains its polar-
ization state on hitting a disk and Fresnel’s intensity
reflectance depends on the polarization state: Quite interest-
ing, the transport mean free paths for the transverse electric
and transverse magnetic polarizations are different. Inspired
by the rich optics of a two-dimensional packing and follow-
ing a step-by-step approach to a real system, our attention is
naturally directed to estimate l* of a three-dimensional
granular medium or wet foam. We speculate that one can
multiply Eq. �2� with a factor of about 1 to estimate the
transport mean free path for a three-dimensional packing.
Apparently, only a detailed study will approve or disapprove
our speculation which is based on the following observation:
To understand the role of liquid films for light transport in
dry foams, we studied two- and three-dimensional Voronoi
foams �27,31�. The interesting result is that the transport
mean free paths for these dry foams are determined by the
same factor �1−r� /r for a constant-intensity reflectance r in
spite of the difference in dimension: l

2D Voronoi
* �r��1.10R�1

−r� /r and l
3D Voronoi
* �r��1.26R�1−r� /r, where R denotes the

average cell radius �51�.
Our “mean-field” theory presented in Sec. III A relies on

the average step lengths L̄in and L̄out. We note that Lin
=2R cos �� and the probability distribution of the incidence
angle �� is F�����=cos ��; see the Appendix and Fig. 1�b�. It
follows that the probability distribution of Lin is G�Lin�
=Lin / �2R�4R2−Lin

2 �, L̄in=�R /2, and Lin
2 =�Lin

2 G�Lin�dLin
=8R2 /3. Figure 5 delineates the probability distribution
G�Lout� as a function of Lout /R for various packing fractions
�. After reaching its pronounced maximum, the distribution
G�Lout� decays exponentially. The pioneering work of
Heiderich et al. �52� suggests that the broadness of G�Lin�
and G�Lout� affects the value of l* by a factor about 1.

In two-dimensional space, l* and Dm are related as Dm

= l*cm /2, where cm is the transport velocity of light. In a
medium composed of dielectric spheres comparable to the
light wavelength � �Mie scatterers�, the transport velocity
differs by an order of magnitude from the phase velocity
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times the velocity of light c� as a function of the intensity reflec-
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assumed. Monte Carlo simulation results and Dm�r� are denoted,
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�53�. When spheres are much larger than the light wave-
length, the difference between the two velocities becomes
unimportant. However, our first approximation to cm �Eq.
�22�� can be improved by considering the real �rather than
infinite� size parameter of disks and the pair-correlation func-
tion of disks.

We assumed that on hitting a disk, the incident and trans-
mitted rays have the same direction. Note that in the case
nout�nin, a photon moving in the host medium and hitting
the disks experiences an average scattering angle �0

�/2��
−2��F���d�=2 �in radians� due to the reflections. Taking
into account the inequality of the incidence and refraction
angles and the total internal reflection of rays with incidence
angle greater than �c=arcsin�nin /nout�, the average scattering
angle due to the transmissions is �0

�c�arcsin�nout /nin sin ��
−��F���d�=0.132 �in radians�, where nout=1.34 and nin=1
are assumed. Reflections are more efficient than transmis-
sions in randomizing the direction of photons. Thus the as-
sumption that the incident and transmitted rays have the
same direction leads to a plausible estimate of l*.

Fresnel’s intensity reflectance depends on the incidence
angle and the polarization state of the light. However, an
average �constant� intensity reflectance r may describe the
photon diffusion. To estimate r, we first consider the case
nout�nin and define the critical angle �c=arcsin�nin /nout�.
The probability distributions of the incidence angles � and
�� are F���=cos � and F�����=cos ��. We define rout→in
=�0

�/2rout→in���F���d�. Here out→ in indicates a ray incident
from the host medium onto the disk. The incident electric
field can be decomposed into a component parallel �p� to the
plane of incidence and a component perpendicular �s� to this
plane. To address the photon diffusion in a three-dimensional
random packing, as reflectance rout→in��� we have taken an
average over the p and s polarizations: rout→in���
=0.5�rout→in�� , p�+rout→in�� ,s��. Note that for ���c,

Fresnel’s intensity reflectances are 1. Similarly, we define
rin→out=�0

�/20.5�rin→out��� , p�+rin→out��� ,s��F�����d�� and
then use r=0.5�rout→in+rin→out� in Eq. �2� to estimate l*.

In the case nout�nin, the appropriate critical angle is �c
=arcsin�nout /nin�. Here 0���� /2 and 0�����c. The fact
that ����c ensures that a photon moving in the disk is able
to enter the host medium, since Fresnel’s intensity reflec-
tance is 1 for ����c. An extension of the Appendix and
numerical simulations indicate that the probability distribu-
tions of the incidence angles � and �� are F���=cos � and
F�����=cos �� /sin �c, respectively. We define rout→in
=�0

�/20.5�rout→in�� , p�+rout→in�� ,s��F���d� and rin→out
=�0

�c0.5�rin→out��� , p�+rin→out��� ,s��F�����d�� to estimate
r=0.5�rout→in+rin→out�. In the limit nin=nout, we find r=0. In
this limit the photon transport is ballistic and Eq. �2� cor-
rectly predicts l*→.

For glass disks �nin=1.5� immersed in air �nout=1.0�, we
estimate r�0.12. Thus for a packing fraction �=0.64, we
find l*�7R. For glass disks immersed in water �nout=1.34�,
we find r�0.09 and l*�9R. Our transport mean free paths
are smaller than the experimental values �6,8� by a factor of
about 2. Now we consider a simple model for wet foams. For
air bubbles �nin=1� immersed in water �nout=1.34�, we esti-
mate r�0.20. Figure 6 delineates l* �in units of R� as a
function of the liquid volume fraction �=1−�. From Fig. 6
we find that in the range 0.08���0.15, our analytical result
agrees well with the relation

l* � R�0.11

�
+ 2.37� . �23�

Using the hybrid lattice gas model for two-dimensional
foams and Fresnel’s intensity reflectance, Sun and Hutzler
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Numerical simulations of Ref. �24� are well described by l* /R
�0.26 /�+4.90.

DIFFUSIVE TRANSPORT OF LIGHT IN A TWO-… PHYSICAL REVIEW E 78, 031121 �2008�

031121-7



performed a numerical simulation of photon transport �24�.
For 0.02���0.16, their numerical results can be fitted to
l*�R�0.26 /�+4.90�. Figure 6 compares our analytic predic-
tion with the numerical result of Ref. �24�. Again our ana-
lytic estimate is smaller than the numerical simulations by a
factor of about 2.

Quite remarkably, our analytic estimate of the transport
mean free path l* quoted in Eq. �2�, sheds some light on the
empirical law of Vera et al. and the numerical simulation of
Sun and Hutzler: l* /R is a linear function of 1 /�; see Eqs.
�1� and �23�. For a better understanding of the empirical law
�1�, we aim at a more realistic model which not only consid-
ers Fresnel’s intensity reflectance with its significant depen-
dence on the incidence angle, but also the broad distribution
of the photon step lengths. Also an extension to the three-
dimensional packing of polydisperse spheres is envisaged.
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APPENDIX: THE PROBABILITY DISTRIBUTIONS
F(�) AND F�(��)

To find the probability distribution of the random variable
�, we assume that the impact parameter s in Fig. 1�c� has a
uniform distribution in the interval �0,R�. In other words, we
assume that the number of incident rays with an impact pa-
rameter less than s is proportional to s. The cumulative dis-
tribution function Fc�����0

�F���d� is then Fc���=Prob�s
�R sin ��=sin �. It follows that

F��� =
dFc���

d�
= cos � . �A1�

Now we consider the path of photons inside the disk; see
Fig. 1�d�. Each ray can be characterized by its distance s�
from the center of the disk. We assume that the random vari-
able s� has a uniform distribution in the interval �0,R�. Since
s�=R sin ��, the cumulative distribution function is F�c����
=sin �� and

F����� =
dF�c����

d��
= cos ��. �A2�

Further numerical simulations of our model confirm these
analytical results for F��� and F�����.
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